Parallel multivariate slice sampling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel multivariate slice sampling

Slice sampling provides an easily implemented method for constructing a Markov chain Monte Carlo (MCMC) algorithm. However, slice sampling has two major drawbacks: (i) it requires repeated evaluation of likelihoods for each update, which can make it impractical when evaluations are expensive or as the number of evaluations grows (geometrically) with the dimension of the slice sampler, and (ii) ...

متن کامل

Slice Sampling with Multivariate Steps

Slice Sampling with Multivariate Steps Madeleine B. Thompson Doctor of Philosophy Graduate Department of Statistics University of Toronto 2011 Markov chain Monte Carlo (MCMC) allows statisticians to sample from a wide variety of multidimensional probability distributions. Unfortunately, MCMC is often difficult to use when components of the target distribution are highly correlated or have dispa...

متن کامل

Generalizing Elliptical Slice Sampling for Parallel MCMC

Probabilistic models are conceptually powerful tools for finding structure in data, but their practical effectiveness is often limited by our ability to perform inference in them. Exact inference is frequently intractable, so approximate inference is often performed using Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we want to efficiently simulate many steps ...

متن کامل

Parallel MCMC with generalized elliptical slice sampling

Probabilistic models are conceptually powerful tools for finding structure in data, but their practical effectiveness is often limited by our ability to perform inference in them. Exact inference is frequently intractable, so approximate inference is often performed using Markov chain Monte Carlo (MCMC). To achieve the best possible results from MCMC, we want to efficiently simulate many steps ...

متن کامل

Slice Sampling with Adaptive Multivariate Steps: The Shrinking-Rank Method

Abstract The shrinking rank method is a variation of slice sampling that is efficient at sampling from multivariate distributions with highly correlated parameters. It requires that the gradient of the logdensity be computable. At each individual step, it approximates the current slice with a Gaussian occupying a shrinking-dimension subspace. The dimension of the approximation is shrunk orthogo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Computing

سال: 2010

ISSN: 0960-3174,1573-1375

DOI: 10.1007/s11222-010-9178-z